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ABSTRACT 

 

Stimulus-response habits benefit behavior by automatizing the selection of rewarding actions. 

However, this automaticity comes at the cost of reduced flexibility to adapt behavior when 

circumstances change. The goal-directed system is thought to counteract the habit system by 

providing the flexibility to pursue context-appropriate behaviors. The dichotomy between 

habitual action selection and flexible goal-directed behavior has recently been challenged by 

findings showing that rewards bias both action and goal selection. Here, we test whether reward 

reinforcement can give rise to habitual goal selection much as it gives rise to habitual action 

selection. We designed a rewarded, context-based perceptual discrimination task in which 

performance on one rule was reinforced. Using drift-diffusion models and psychometric 

analyses, we found that reward facilitates the selection and execution of rules while also 

impairing the ability to switch to alternative, low-reward rules. Strikingly, we found that these 

biases persisted in a test phase in which rewards were no longer available. This facilitation of 

the performance of high-reward rules, at the cost of reduced cognitive flexibility, demonstrates 

that reward can give rise to habitual rule selection. Our findings build on recent work showing a 

role for the reward learning system in influencing how the goal-directed system selects goals. 

Moreover, they demonstrate that reward creates lasting biases in goal-directed behavior that 

could contribute to cognitive inflexibility in healthy and clinical populations. 
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INTRODUCTION 

 

Habits are powerful determinants of daily decisions and contribute to maladaptive 

behaviors in neurocognitive disorders (Lhermitte, 1983; Wood & Rünger, 2016). Habitual 

behavior is often characterized as a rote or automatic behavioral response to a specific 

stimulus, such as stopping at a red light (Knowlton et al., 1996; Schneider & Shiffrin, 1977). 

However, many habits operate at the level of goals rather than specific actions. For example, 

someone who has a habit of exercising will habitually pursue exercise-related behaviors, such 

as navigating to a gym or researching exercise-relevant information. In both of these cases, the 

pursuit of a goal (stopping at a red light or exercising) is beneficial; however, in the former case, 

a specific action, pressing the brake pedal, achieves the goal, whereas in the latter case, a 

variety of context-dependent strategies are useful for goal pursuit. The concept of a “goal habit” 

postulates that the selection of a goal state is influenced by reward learning (Cushman & Morris, 

2015), and flexible cognitive control strategies are deployed to pursue these goals. Maladaptive 

compulsions in clinical contexts often involve habitual activation of goals. For example, a person 

suffering from drug addiction may exhibit goal habits, such as exploring novel strategies for 

attaining drugs, and stimulus-response habits, such as drug-cue-induced approach behavior 

(Vandaele & Ahmed, 2021). Recent research has emphasized the role of the habit system in 

driving stereotyped mental behaviors in anxiety (Brewer & Roy, 2021), anorexia nervosa 

(Steinglass & Walsh, 2006), obsessive-compulsive disorders (Gillan & Robbins, 2014; Voon et 

al., 2015), and in Parkinson’s disease (Weintraub, 2008). However, the neural and 

psychological mechanisms underlying goal habits remain underspecified.  

 

Habitual action selection is thought to arise in part from the dopaminergic adjustment of 

corticostriatal synaptic strength (DeLong, 1990; Graybiel, 1998; Niv, 2009). In response to 

reward, dopamine release strengthens the corticostriatal synapses of cortical pools representing 

a chosen action. This corticostriatal plasticity favors the future selection of actions that lead to 

rewards. Neurons in the lateral prefrontal cortex represent abstract rules and goals (Wallis et al., 

2001)) rather than actions but share a similar, overlapping corticostriatal architecture with motor 

cortex (Alexander et al., 1986; Haber, 2012). It has been hypothesized that reward reinforces 

abstract task representations analogously to cortical action representations (Badre & Frank, 

2012; Collins & Frank, 2013; Frank & Badre, 2012; Radulescu et al., 2019; Ribas-Fernandes et 

al., 2011). Recent research has confirmed key predictions of this model by showing that reward 

history influences the selection of goal states (Cushman & Morris, 2015) and hierarchically 
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structured task sets (Collins & Frank, 2013; Eckstein & Collins, 2020; Rmus et al., 2021). The 

present study builds upon this work by testing whether reward reinforcement of abstract 

representations causes goal habits.  

 

 We designed a behavioral experiment to test three key three predictions of the goal 

habit model. First, execution of habitual goals ought to be improved relative to other goals. 

Second, the ability to adapt goals under changing contexts should be reduced. Third, habitual 

goal selection should persist even after the conditions which gave rise to the habit have 

changed. A key feature of goals is that they guide context dependent behavior, and we 

operationalized this context-dependence using a rule-based perceptual discrimination task. We 

found that reward reinforcement of rules influenced behavior in a manner consistent with all 

three predictions: Execution of the high-reward rule was improved, the ability to adapt behavior 

away from the high-reward rule was reduced, and both of these effects persisted after the 

opportunity to earn rewards was eliminated. These results show that reward induces habitual 

biases in goal-directed behavior. 

 

METHODS 

 

Subject details 

 

The study design and methods were approved by and followed the ethical procedures of 

the University of California, Berkeley Committee for the Protection of Human Subjects. Eighty-

six subjects provided written informed consent, 65 females, median age 20 years, SD 4.83, 

range 18 - 51. Data from the test blocks are missing from one subject due to a computer error. 

The target sample size, eighty-five subjects, was chosen to have 80% power to detect a 

medium-sized correlation (r = 0.3) at an alpha of 0.05. Because we did not identify any outlier 

subjects in behavioral performance (defined as three standard deviations below the mean 

accuracy), and all subjects performed well-above chance, no subjects were excluded. 

 

Task design 

 

Subjects performed a context-based perceptual discrimination task in which they could 

earn rewards for accurate performance (M. L. Waskom et al., 2019; M. L. Waskom & Wagner, 

2017). On each trial, subjects responded based on one of three rules, color, shape, or motion 
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direction of a field of colored, moving shapes. The dots could be primarily pink or green, 

primarily circles or crosses, and moving primarily up or down. Dominant color, shape, and 

motion direction were balanced across each run. Subjects were given up to two seconds to 

respond using the ‘1’ and ‘2’ keys on a standard keyboard and could respond at any time during 

the stimulus period. The stimulus remained on the screen for two seconds regardless of when 

the subject responded. All three rules shared the same keys, i.e., response ‘1’ could signal 

‘green’ on a color trial and ‘up’ on a motion trial. The rule indicating which dimension to respond 

to was cued simultaneously with stimulus onset by a three-to-five-sided polygon drawn at the 

center of the stimulus array. The assignment between shape cue and rule remained consistent 

throughout the study for each participant and was counterbalanced across participants.  

Coherence varied pseudorandomly across trials and independently across the three 

dimensions of each stimulus. Coherence varied in four evenly-spaced steps from hardest (least 

coherent) to easiest (most coherent), with color and shape coherence ranging from 0.52 to 0.64 

(zero coherent information is 0.50) and motion coherence ranging from 0.02 to 0.14 (zero 

coherent information is 0.0). These levels were chosen based on piloting to provide a range in 

performance from slightly-above chance accuracy to near-ceiling accuracy on all three rules. 

There were differences in accuracy between the rules, F(1.73, 147) = 20, η 2g  = .059, p < .001, 

shape M: 72.2%, motion M: 74.1%, color M: 77.1%; however, there were no differences in RT, p 

> .2. Although this accuracy difference contributes noise to our data, rule counterbalancing was 

designed to prevent any systematic influence on the reported results.  

The task was organized into a reward phase and a test phase. During the reward phase, 

subjects were instructed that some trials carried the potential to earn rewards for correct 

responses. Incorrect responses prevented the subject from earning a reward. One rule was 

randomly chosen for each subject to be the high-reward rule. High-reward rule trials carried an 

85% probability of reward for correct responses. Low-reward rule trials carried a 15% probability 

of reward for correct responses. Because subjects were only rewarded for correct trials, and the 

lower coherence levels in the task were challenging, the effective reward rate was 64.9% for the 

high-reward rule and 7.6% for the low-reward rules. Subjects performed six blocks of 96 trials 

for a total of 572 trials of the reward task. Subjects were told that one of the blocks would be 

selected randomly to count for real, and rewards from that block, each worth $0.50, would be 

paid as a bonus.  
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Rewards were signaled by the color of the fixation cross changing to gold for 500 ms. On 

correct, unrewarded trials, there was no feedback. The fixation cross turned red on error trials, 

but subjects were not penalized for incorrect responses. The fixation cross flickered red on trials 

where the subject failed to respond during the stimulus window, and a reward was deducted. 

Feedback was presented 300ms after the offset of the stimulus, and the intertrial interval was 

1000 ms. Immediately after the reward phase, subjects took an enforced six-minute break 

before beginning the test phase. We intended for the break to create a clear boundary between 

the phases and to provide an opportunity to consolidate reward learning (Murty et al., 2017). 

Subjects were instructed that there would be no rewards in the test phase, but the task was 

otherwise identical. Subjects performed two blocks of 96 trials of extinction for a total of 192 

trials.  

Figure 1. Task Design. A) Subjects (N = 86) performed a rewarded, context-dependent 

perceptual decision-making task. On each trial, a central cue (a triangle in the above example) 

https://paperpile.com/c/uFH05H/vxq7
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indicated whether subjects responded based on the shape, color, or motion of a shape 

kinematogram. Accurate responses on one of the rules were rewarded at a higher rate (85%) 

than the other two rules (15%). Feedback indicated whether the subject earned a reward on a 

rewarded trial (gold cross), was correct but unrewarded (no feedback), or made an incorrect 

response on any trial (red cross). B) After the reward period, subjects took an enforced break 

before commencing the test phase. This phase did not carry the possibility of reward but was 

otherwise identical to the reward phase. C) Each block consisted of miniblocks containing only 

two of the three rules. These miniblocks allowed us to compare performance on the same rule 

when competing against the high-reward rule versus not competing against the high-reward 

rule. In the above example, if motion is the rewarded rule, then color is a competing rule in a 

{motion, color} miniblock, and it is a non-competing rule in a {shape, color} miniblock. 

 

To assess the effect of rule habit on cognitive flexibility, rule order was organized in an 

unsignaled miniblock structure. Within each miniblock, subjects performed only two out of the 

three rules. These miniblocks allowed us to compare performance on the same rule when 

competing against the high-reward rule versus not competing against the high-reward rule. 

Each miniblock of 16 trials contained an equal number of trials for each of the two rules in a 

pseudorandom order. Each miniblock, and hence the task, contained a full crossing of 

instructed rules and coherence levels. Each run contained six miniblocks comprising two 

instances of the three possible pairwise combinations of rules. Miniblocks with the same two 

rules were not repeated sequentially, and the first trial of each miniblock was always the rule not 

included in the previous miniblock. Subjects were not instructed on the miniblock structure.  

 

Subjects were trained on the behavioral task in a two-hour session 1-3 days before the 

main task. Subjects first practiced each rule one at a time in blocks of 40 trials for 840 trials. 

During this training, the difficulty was increased by adjusting the coherence in a 3-down-one-up 

staircase (i.e., the coherence was reduced after three consecutive correct responses and 

increased after every error). Subsequently, subjects were instructed on the cue-rule 

assignments and performed two practice blocks of 96 trials. These blocks were identical to the 

main task except that they had no rewards and trivially-easy coherence. The cue-rule 

assignments from training were consistent for the rest of the study. Finally, subjects performed 

six practice blocks of the main experimental task without rewards. 

 

Data analysis 
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Data were analyzed using custom code written in Python. For continuous dependent 

variables (e.g., reaction time), mixed-effects models were implemented using the lmer package 

in R 4.2.0 (Bates et al., 2015). For binary dependent variables (accuracy), mixed-effects models 

were implemented using the glmer package and a binomial link function. All mixed-effects 

models contained random intercepts for each subject and random slopes for rule coherence. 

We chose this random effects approach because theoretical and modeling work shows that 

mixed-effects models generalize most effectively when they use the maximal random effects 

structure that is justified by the design and does not create convergence issues (Barr et al., 

2013). Data plots were created using Seaborn 0.11.2 (M. Waskom, 2021). 

 

Drift-diffusion modeling 

 

Drift-diffusion modeling was performed using HDDM 9.2 (Wiecki et al., 2013). Models 

were fit independently for the reward reinforcement and extinction test phases using five chains 

of 20,000 samples. We discarded the first 10,000 samples as burn-in and thinned the chains by 

retaining only every fifth sample, which resulted in 10,000 samples from the posterior 

distribution. The Gelman-Rubin statistic was less than 1.1 (max r-hat < 1.01) for all parameters, 

indicating that the five chains converged to the same stationary distribution. We modeled the 

effects of experimental conditions on drift-rate parameters using a within-subject regression 

model, which allowed us to account for individual differences in task performance. Our models 

assumed that each subject’s parameters were fixed across trials, as the more complex trial-by-

trial variability models failed to converge. Models assumed a 5% outlier rate. Posterior predictive 

checks averaged across 500 simulations of the task for all subjects to derive predicted accuracy 

and reaction times.  

 

RESULTS 

  

The subjects performed a rewarded, context-based perceptual discrimination task, 

Figure 1. One of the rules was selected as the high-reward rule, and correct performance on 

that rule yielded a higher reward probability than the other rules. The task is well-suited to detect 

habitual rule selection, as opposed to stimulus-response or feature learning, because all three 

stimulus features are present on every trial and have no statistical relationship to behavioral 

responses or rewards. We first assessed whether performance on the high-reward rule differed 

from the low-reward rules. Although subjects were not instructed on reward contingencies, they 

https://paperpile.com/c/uFH05H/ErMg
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were more accurate, z = 6.9, p < .001, Figure 2A, and there was trending evidence that they 

were faster, t(4884) = 1.92, p = .055, Figure 2B, when performing high-reward rules. This result 

is consistent with findings showing that reward motivation facilitates the execution of demanding 

tasks (Chiew & Braver, 2014; Krawczyk & D’Esposito, 2013; Locke & Braver, 2008). To 

determine whether reward reinforcement of a rule leads to the development of a rule habit, we 

included a post-learning test phase identical to the learning task, except that subjects were 

instructed that there was no possibility of reward. We predicted that implicit reward learning 

during the reward phase would lead to enduring facilitation of high-reward-rule execution, even 

when there is no longer any incentive to improve performance on the high-reward rule. During 

the test period, we found that accuracy was higher, z = 3.6, p < .001, Figure 2A, and reaction 

times were faster, t(3007) = 3.92, p < .001,  Figure 2B, for the previously high-reward rule. This 

finding shows that reward reinforcement creates enduring facilitation of rule-based behavior, 

consistent with a cognitive habit facilitating the implementation of high-value goals. 

 

 

https://paperpile.com/c/uFH05H/WQuO+Ukr5+Ufwd
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Figure 2. Reward reinforcement creates rule habits. A) Accuracy was higher for the high-reward 
rule than the low-reward rules in both the reward and test phases. In addition, accuracy was 
higher for high-coherence (easy) trials than for low-coherence (hard) trials. B) Reaction times 
were faster for the previously high-reward rule in the test phase. During the reward phase, there 
was an interaction between coherence and rule type on reaction times.  
  

An alternative account of the improved performance of the high-reward rule is that 

reward biased perceptual learning of the discrimination task (i.e., the determination of the 

dominant color, shape, or motion direction), leading to improved perceptual discrimination in the 

high-reward-rule dimension (Law & Gold, 2008; Roelfsema et al., 2010; C. M. Solley & Murphy, 

1960). We sought to minimize the influence of perceptual learning by training subjects on the 

perceptual discrimination task on a previous training day. Despite this training, there was 

trending evidence of continued perceptual learning during the reward phase, linear effect of trial 

number on accuracy, Z  = 1.9, p = .069. However, perceptual learning was not different for the 

high-reward rule during learning, interaction of trial number and high-reward rule Z  = 1.5, p = 

.13. Therefore, perceptual learning is unlikely to fully explain improved performance on the high-

reward rule during the test phase. 

 

 We varied the coherence of the information in each trial to be sensitive to behavioral 

effects that depend on the difficulty of rule implementation (M. L. Waskom et al., 2019). As 

expected, coherence strongly affected rule accuracy, z = 24, p < .001, and reaction time, 

t(4884) = -21, p < .001, during the reward phase. We predicted that reward would have the 

largest effect on the more difficult trials because these trials benefit the most from improved rule 

selection and maintenance. Although we found an interaction between rule type (high-reward or 

low-reward) and coherence in the reward phase, accuracy Z = -4.3, p < .001, reaction time 

t(4884) = 6.0, p < .001, it was opposite to the predicted direction: we found that reward had the 

highest impact on easier trials. One account of this finding is that subjects stood to gain the 

most reward with the least cognitive effort by improving performance on easy trials (Shenhav et 

al., 2013). Such an adaptive cognitive control account would not predict improved performance 

during the test period because no rewards are at stake. Contrary to this prediction, we found a 

similar interaction in the test phase for rule accuracy, z = 2.46, p = .014, though not reaction 

time, p > .2. In the following section, we use a drift-diffusion model approach to provide an 

alternative account of this behavioral effect.  
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Figure 3. Conceptual model of rule habits. A) Rewards reinforce corticostriatal synapses 

representing the rewarded rule, facilitating its selection and impairing the ability to select the 

non-rewarded rule. B) Selection of non-rewarded rules should be improved in contexts where 

rewarded rule is not relevant. The blue shaded area indicates the inferior frontal sulcus, which is 

preferentially engaged in context-dependent decision-making (M. L. Waskom et al., 2014), and 

the red shading depicts the striatum. Note that the positioning of the rules in PFC is arbitrary 

and is not intended to depict anterolateral gradients in feature processing. 

 

Habits improve the execution of rewarding behaviors at the cost of reduced flexibility to 

adapt behavior when goals change. This facilitation is thought to arise due to dopamine-

dependent adjustment of corticostriatal synapses, which facilitates selection of rules previously 

associated with rewards while suppressing the selection of alternative rules Figure 3A. 

Importantly, this reduction in flexibility should only occur when habits compete against 

alternative behaviors for control of behavior, Figure 3B. For example, a habit of exercising after 

work will specifically influence decisions about after-work plans, while not influencing decisions 

about the morning commute. To test for the context-dependence of the influence of goal habits 

on cognitive flexibility, we embedded a miniblock structure in the task, Figure 1C. Within each 

miniblock, subjects performed only two out of the three rules. These miniblocks created epochs 

where rule execution competed with a high-reward rule and epochs without this competition.  

During the reward phase, accuracy varied as a function of rule coherence, F(2.5, 210) = 709, η 

2g  = .62,  p <.001, rule type (high-reward, competing, non-competing), F(1.4, 121) = 6.4, η 2g  = 

.016,  p = .006, and there was a trend towards an interaction between rule type (high-reward, 

competing, non-competing) and coherence, F(5.3, 452) = 2.1, η 2g  = .006,  p = .061, Figure 4A. 

These relationships persisted into the test phase, where we found a main effect of rule 

coherence, F(2.5, 210) = 215, η 2g  = .34,  p <.001, rule type (high-reward, competing, non-

https://paperpile.com/c/uFH05H/qM84
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competing), F(1.9, 157) = 3.6, η 2g  = .006,  p = .033, and an interaction between rule type and 

coherence, F(5.3, 448) = 2.8, η 2g  = .011,  p = .015. However, contrary to our predictions, there 

was no difference in accuracy between competing and non-competing rules in the reward nor 

the test phases, ps > .2. However, we found that reaction times were faster for the non-

competing, relative to the competing rule during the reward phase, t(4884) = 6.16,  p < .001, 

Figure 4C, but not during the test phase, p > .2. Given that this analysis compares performance 

on the same rules in different miniblock contexts, we may have lacked the sensitivity to detect 

small differences in performance. 

 

As an alternative method of testing whether reward created a rule habit, we assessed 

whether switch costs in reaction time varied as a function of reward. Because a habit should 

facilitate the selection of high-reward rules, we predicted that switching to a high-reward rule 

should be faster than switching between low-reward rules. Additionally, because habits can 

impair the flexibility to adapt behavior when goals change, we predicted that switching away 

from a high-reward rule ought to be slower than switching between low-reward rules. We 

constructed a model with switch type {switching away from a high-reward rule, switching to a 

high reward rule, staying with the same rule, and switching between low reward rules} and trial-

type {high-reward, competing, non-competing} as regressors. The trial-type regressor ensures 

that any differential switch costs are not simply due to performance differences between the 

rules. Consistent with the predictions of the rule habit hypothesis, we found that during the 

reward phase, subjects were faster at switching to the high-reward rule, relative to switching 

between low-reward rules, Z = -5.3, p < .001. However, switching away from a high-reward rule 

was not slower than switching between low-reward rules, p > .2. These results suggest that the 

selection of a high-reward rule is facilitated during reward learning, while the flexibility to adapt 

behavior is unaffected by reward. In contrast, in the test phase, we found that subjects were 

slower to switch away from a high-reward rule, relative to switching between low-reward rules, Z 

= 1.96, p = .049. Consistent with habitual goal selection, this finding shows persistently reduced 

flexibility to adapt behavior away from previously high-reward rules.  

 

Drift diffusion models of choice 

 

Reward influences multiple components of rule-guided behavior 
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We predicted that reward reinforcement would lead to the formation of a rule habit that 

both facilitates the execution of the habitized rule and impairs the ability to implement competing 

rules. Reward could influence performance on rule behavior in multiple different ways. For 

example, reward could facilitate the initial selection of the rule while not influencing the 

execution of the rule. Alternatively, reward could influence the execution of the rule by 

influencing the fidelity of sensory representations of the relevant stimulus dimension (Goltstein 

et al., 2018; Hickey et al., 2015) or by shifting the speed-accuracy tradeoff in favor of accuracy 

(Bogacz et al., 2006; Tajima et al., 2016). We fit a drift-diffusion model to our data to discover 

how reward influences rule-guided behavior. Drift-diffusion models (DDMs) conceptualize 

decision-making as an evidence-accumulation process that commits to a decision when the 

threshold of evidence for an option is crossed. This framework deconstructs complex rule-

guided behavior into distinct behavioral components, which allows for precise hypothesis testing 

about the influence of reward and the formation of high-level habits. 

We sought to establish whether rule type (i.e., rewarded, competing, noncompeting) 

influenced three independent aspects of the decision-making process:  

1) The drift rate captures the efficiency of the evidence integration process. Conditions 

with higher drift rates will have higher accuracy and faster reaction times. This parameter can 

capture variability in rule execution between rule types. 

 2) The decision threshold captures the level of evidence needed to commit to a 

decision. Conditions with higher thresholds will have higher accuracy and slower reaction times. 

This parameter can capture variability in response caution between rule types. 

3) The non-decision time captures the time needed to initiate the drift-diffusion process. 

Conditions with higher non-decision time will have slower reaction times without necessarily 

having higher accuracy. This parameter can capture variability in the time it takes to select a 

rule.  

https://paperpile.com/c/uFH05H/p9Ku+f5Jb
https://paperpile.com/c/uFH05H/p9Ku+f5Jb
https://paperpile.com/c/uFH05H/7MtH+g8Tw
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Figure 4. Qualitative model comparison. Models are labeled by parameters that were influenced 
by rule condition: a = decision threshold, t = initiation time, and v = drift rate. A) Subject 
accuracy by rule coherence and experimental condition for the reward phase. Subjects are 
more accurate for the rewarded rule. B) Simulated accuracy data for each model. Only models 
in which the task condition influenced the drift rate could explain the increased accuracy for the 
high-reward rule. C) Subject reaction times by rule coherence and experimental condition for the 
reward phase. Subjects are faster for the noncompeting relative to the competing rule. In 
addition, reaction times for the rewarded rule are faster on easy relative to hard trials.  D) 
Simulated reaction time data for each model. Most models could capture the reaction time 
difference between competing and non-competing rules. However, only the models in which 
both drift rate and decision threshold are influenced by reward could capture the interaction 
between reward condition and coherence on reaction time.  
 

We first sought to establish whether rule type influenced each of these parameters. Our 

model selection strategy employed a balanced consideration of both formal model 

quantification, the deviance information criterion (DIC), and post-predictive checks, which 

compare models by asking whether they explain qualitative features of interest in the data 
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(Wilson & Collins, 2019). We wanted our models to explain three prominent effects in the 

reward phase data: (1) higher accuracy for the high-reward rule and, Figure 4A (2) the 

interaction between coherence and rule type on accuracy and reaction time, Figure 4C, and (3) 

the slower reaction time for the competing, relative to the noncompeting rule, Figure 4C. We first 

examined three models in which rule type (high-reward, competing, or noncompeting), 

influenced drift rate, decision threshold, or non-decision time only. Of these models, only the 

drift-rate model could accurately capture the higher accuracy for the high-reward rule trials, 

Figure 4B. However, this model failed to capture the other two behavioral effects, Figure 4D. We 

next asked whether including additional effects of rule type on decision threshold or non-

decision time could capture these effects. We found that both the {drift-rate, threshold} models 

and the full {drift-rate, threshold, non-decision time} models could capture all three qualitative 

behavioral effects, Figure 4B,D. We decided to use the {drift-rate, threshold, non-decision time} 

model as the final model for our data for three reasons: 

1. The post-predictive checks show a small but significant improvement in the model’s 

ability to account for the data, Figure 4D. 

2. It had the lowest DIC, Figure 5D, indicating that it provided the best balance between 

explanatory power and complexity of the models we compared. 

3. An effect of the task condition on each of these three parameters has distinct 

interpretations, and the full model avoids the risk of misinterpreting results (e.g., by 

attributing an effect to the decision threshold that would have been better captured by 

non-decision time).  

https://paperpile.com/c/uFH05H/B5nq
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Figure 5. Reward reinforcement creates a persistent increase in cognitive efficiency at the cost 
of reduced cognitive flexibility. A) Drift rates were higher for the high-reward rule during both 
reward reinforcement and the test phase, indicating persistent enhancement of rule 
implementation by reward. Moreover, drift rates were moderately reduced for the competing rule 
relative to the non-competing rule in both phases, indicating by the leftward shift of the 
competing rule distribution relative to x = 0, the non-competing rule reference B) Initiation times, 
which reflect the time it takes to begin evidence integration, were faster for the high-reward rule 
relative to the competing rule in both task blocks C) In the reward phase, decision thresholds 
were increased for the high-reward rule, indicating increased response caution. This strategy 
optimizes the reward rate by favoring slower, more accurate responses. D) Bayesian model 
comparison favors a model in which rule condition influences drift rate, initiation times, and 
decision thresholds. Lower DIC scores indicate more model evidence, and scores are defined 
relative to a baseline model without condition effects. Models are labeled by parameters that 
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were influenced by rule condition: a = decision threshold, t = initiation time, and v = drift rate. E) 
Subject accuracy and F) reaction times for each rule condition are well-matched by simulated 
data (G-H) from the model.  
 
Impacts of reward on rule execution 
 

We theorized that reward reinforcement creates habits that facilitate rule execution. The 

drift rate parameter of a DDM reflects the sensitivity of the evidence integration process, with 

higher drift rates corresponding to improved rule execution. We first asked whether drift rates 

were increased for the high-reward rule. Unlike null hypothesis significance testing, which tries 

to reject a null hypothesis, Bayesian posterior probabilities indicate the model’s evidence that an 

effect exists, given the data. We considered strong evidence to be when more than 95% of the 

posterior distribution was larger in one condition than another, moderate evidence to be 90% or 

higher, and trending evidence to be 80% or higher. We found that the drift rates were higher for 

the high-reward rule relative to the non-competing rule, posterior probability = 100%, and the 

competing rule, posterior probability = 100%. Consistent with the development of a rule habit, 

we found that this facilitation of the high-reward rule persisted into the test phase, posterior 

probability of reward > noncompete = 99.6%, reward > compete = 100%, Figure 5a. Because 

habits can impair the flexibility to change behavior, we next examined whether execution of 

rules that compete against high-reward rules was impaired. We found trending evidence that 

drift rates were lower for competing rules than non-competing rules in both the reward phase, 

posterior probability = 86.9%, and the test phase, posterior probability = 83.3%, Figure 5a. 

Together, these findings suggest that reward reinforcement creates a lasting improvement in 

rule execution, potentially at the cost of reduced flexibility to implement alternative, less-

rewarding rules.  

 

An important question posed by our findings is how reward reinforcement improves 

execution of the high-reward rule. One possibility is that strengthening the rule representation 

reduces interference from alternative rules. Dopamine release in PFC may help maintain the 

current rule in working memory and gate information from the irrelevant stimulus dimensions 

(Cools & D’Esposito, 2011; O’Reilly & Frank, 2006). According to this view, drift rates are lower 

for the low-reward rules because subjects are less adept at filtering irrelevant stimulus 

information. We asked whether response information from the other dimensions influenced 

behavior (e.g., the motion direction on a color rule trial). Consistent with reward protecting rules 

from interference, reaction times were relatively faster for the high-reward rule when the 

dimensions of the kinematogram indicated conflicting button responses, t(48890) = -2.0, p = 

https://paperpile.com/c/uFH05H/ktal+ppa3
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.048. This result suggests that reward improves rule execution by reducing interference from 

lower reward rules.  

 

Impacts of reward on rule selection 
 

 We theorized that a habit would facilitate the selection of the high-reward rule because 

dopaminergic modulation of corticostriatal circuitry ought to facilitate gating of high-reward 

representations (O’Reilly & Frank, 2006). Variation in the initiation time parameter of the DDM 

provides a proxy for the time it takes to internally select a rule because rule selection likely 

occurs prior to rule execution in this task. Consistent with the habit model, we found that the 

initiation time was reduced for the high-reward rule relative to the competing rule during the test 

phase, posterior probability = 99.8%, though not during the reward phase (Leong et al., 2019), 

Figure 5b. It is possible that the development of faster rule selection occurs slowly and is only 

detectable after training. We also predicted that habits would interfere with the selection of 

alternative behaviors. We tested whether subjects were slower to initiate low-reward rules that 

were competing in a context with high-reward rules. During the reward phase, we found that the 

initiation time of the competing rule was increased relative to the non-competing rule, posterior 

probability = 100%, Figure 5b. This result suggests that reward reduces the flexibility to select 

competing, nonreward rules. However, during the test phase, the initiation time of the competing 

rule was not slower than the non-competing rule, posterior probability =  75.2%, Figure 5b. This 

finding suggests that competing rules are harder to select when rewards are available, but this 

reduced flexibility does not persist after reward learning. 

 

Impacts of reward on response caution 
 

Although our model selection indicated that rule type influenced decision threshold, we 

did not predict any influence of habit on response caution. However, during the reward phase, 

subjects were incentivized to respond accurately. We predicted that reward reinforcement would 

increase the decision thresholds for the high-reward rule because this strategy optimizes reward 

in a context where accuracy is more important than reaction time (Bogacz et al., 2006; Tajima et 

al., 2016). Consistent with this prediction, we found that the decision thresholds were higher for 

the high-reward rule relative to both the non-competing rule, posterior probability = 98.8%, and 

the competing rule, posterior probability = 95.7%, Figure 5c. Because this adjustment of the 

decision threshold is adaptive for earning rewards, we did not expect it to persist into the test 

phase. Rule condition did not influence decision thresholds in the test phase, posterior 

https://paperpile.com/c/uFH05H/ktal
https://paperpile.com/c/uFH05H/srgd
https://paperpile.com/c/uFH05H/7MtH+g8Tw
https://paperpile.com/c/uFH05H/7MtH+g8Tw
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probabilities < 70%, Figure 5c. Additionally, there were no differences between the competing 

and non-competing rules in either task phase, posterior probabilities < 70%. In sum, subjects 

adjusted their response caution adaptively, responding more carefully only on trials where 

rewards were likely (Grahek et al., 2021). This suggests that different components of rule-

guided decision-making are differentially sensitive to the effects of reward reinforcement, with 

persistent biases emerging in rule execution (drift rate) and rule selection (initiation time) but not 

in the selection of an appropriate speed-accuracy tradeoff (decision threshold). We speculate 

that this distinction occurs because setting a decision threshold is a superordinate control 

process for determining a decision strategy and may be more sensitive to changing reward 

values (Frank, 2006; Son & Sethi, 2006).  

 

Because our DDM disentangles the effects of rule type on distinct components of rule-

guided behavior, it can provide a mechanistic account of surprising behavioral effects. We 

observed that reward led to faster reaction times only on easier trials, Figure 5f, left panel. The 

DDM shows that this effect arises because reward influences both drift-rates and decision 

thresholds. Increased drift rates lead to overall faster reaction times for high-reward rules. 

However, increased decision thresholds cause slower reaction times for harder, high-reward 

rules. Together, these factors predict that the reward will cause the fastest reaction times on 

easy trials, the effect found in our data, Figure 5h. However, the model also predicts improved 

accuracy on the most difficult high-reward trials, an effect that is not present in our data. The 

most difficult trials may engage maximal cognitive resources (Kool et al., 2017), and reward may 

have no additive benefit above and beyond intrinsic motivation. Future work is needed to 

disentangle the influence of extrinsic and intrinsic motivation on cognitive control (Dobryakova et 

al., 2017; Sullivan-Toole et al., 2017).  

 
 

DISCUSSION 

 

We found evidence that reward reinforcement leads to the development of habitual rule 

selection that persists in the absence of reward. Our findings are consistent with the theory that 

dopamine release adjusts corticostriatal synaptic plasticity to favor the selection of rewarding 

rules. However, there are several potential mechanisms by which reward could influence the 

performance of the high-reward rule. We argue that abstract rule representations in PFC are 

reinforced by reward, which facilitates activation and implementation of the rule. Our findings 

that initiation times are reduced and drift rates are enhanced for the high-reward rule are 

https://paperpile.com/c/uFH05H/XUrg
https://paperpile.com/c/uFH05H/RlK5+c4Ut
https://paperpile.com/c/uFH05H/u5va
https://paperpile.com/c/uFH05H/xPR6+xenG
https://paperpile.com/c/uFH05H/xPR6+xenG
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consistent with this finding. A related mechanism is that subjects learn to attribute value to the 

rule cues (i.e., the central shapes, Figure 1) rather than internal rule representations. According 

to this model, valuable cues trigger motivation to use cognitive control without being linked to a 

specific rule (Ballard et al., 2011; Niv et al., 2006; Shenhav et al., 2013). This model could 

explain improved performance on the high-reward rule but does not explain the finding that 

subjects are impaired at switching away from high-reward rules. In fact, increased motivation 

should increase cognitive flexibility (Aarts et al., 2010; Dreisbach, 2006). Another potential 

mechanism is that reward strengthens the associative link between the cue and its associated 

rule representation (Miller et al., 2002). This strengthened association could facilitate activation 

of the rule representation, which would account for the finding that subjects showed reduced 

initiation times for the high-reward rule. However, this model does not explain why drift rates are 

increased for the high-reward rule. Nonetheless, these different mechanisms may co-occur, and 

future work is warranted to identify how reward reinforces internal cue and goal representations.  

 

Rewards likely influenced rule execution by biasing the allocation of attention to the the 

rule-relevant dimension (Etzel et al., 2016; M. L. Waskom et al., 2014). We posit that reward 

influences the deployment of top-down attention to facilitate sensory evidence integration 

(Botvinick & Braver, 2015; Frömer et al., 2021; Krebs & Woldorff, 2017). However, it is also 

possible that reward increases the salience of the high-reward-dimension features (e.g., color), 

which captures attention in a bottom-up manner (Anderson et al., 2011; Della Libera & Chelazzi, 

2009; Failing & Theeuwes, 2014). One distinction between the top-down and bottom-up 

accounts is that the bottom-up mechanism does not predict any difference in performance 

between the competing and non-competing rules (because these are the same rules in different 

contexts). However, evidence for a difference in performance between competing versus non-

competing rules was mixed. Although reaction times differed between these conditions during 

training, this difference did not persist into the test phase. Further, the drift-diffusion models 

found only moderate evidence for a difference in drift rate between these conditions. Therefore, 

it is plausible that both top-down and bottom-up attentional mechanisms could contribute to 

improved performance on the high-reward rule (Grahek et al., 2021). Importantly, both top-down 

and bottom-up attentional mechanisms likely contribute to habitual goal selection. For example, 

images of cigarettes in the media can capture the attention of smokers, which could then 

activate the goal of purchasing cigarettes (Versace et al., 2010; Wood & Rünger, 2016).  

 

https://paperpile.com/c/uFH05H/Siia+B7yM+fpBs
https://paperpile.com/c/uFH05H/L18h+wGaB
https://paperpile.com/c/uFH05H/XVzR
https://paperpile.com/c/uFH05H/qM84+ojkA
https://paperpile.com/c/uFH05H/okRy+rEcQ+EToA
https://paperpile.com/c/uFH05H/W1BS+TkqH+8qL5
https://paperpile.com/c/uFH05H/W1BS+TkqH+8qL5
https://paperpile.com/c/uFH05H/XUrg
https://paperpile.com/c/uFH05H/YrZn+VgU1
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We found that initiation times were faster for the non-competing relative to the competing 

rule during the reward phase of the experiment. We argue that this finding demonstrates 

reduced flexibility to adapt behavior away from a habitized rule. An alternative interpretation is 

that participants allocate cognitive effort according to the relative value of each rule within a 

miniblock. This scaling of reward value relative to the context is termed range adaption (Hunter 

& Daw, 2021; Tversky & Kahneman, 1986). In our task, the higher overall reward rate during the 

reward rule miniblocks could render the small reward possibility associated with the competing 

rule comparatively less valuable. In the non-competing miniblocks, the lower reward rate 

renders the small reward probability of the non-competing rules relatively more valuable. This 

account is consistent with our finding that there was no difference in initiation time between the 

competing and non-competing rules in the test phase, when the reward rates of the two 

conditions were matched. However, we also found that switch costs were higher when dropping 

the previously high-reward rule in the test phase. This finding is inconsistent with range 

adaptation because there are no rewards in the test phase. Moreover, we found similar, though 

moderate, differences in drift rates between competing and non-competing rules in both the 

reward and test phases. Nonetheless, the question of how range adaptation interacts with the 

development of a goal habit is an important target for future research. 

  

A key feature of habits is that they are difficult to unlearn. Our measures showed 

persistent biases in a test period without rewards that occurred several minutes after reward 

learning, indicating resistance to new learning. However, the experiment was not designed to 

create or assess long-lasting habits. The long-term resiliency of habits likely relies on additional 

neural mechanisms, such as increasing dorsal striatal involvement in decision-making  (Yin & 

Knowlton, 2006). Moreover, durable habits are extremely difficult to elicit in the laboratory due to 

the flexibility of human goal-directed cognition (de Wit et al., 2018; Hardwick et al., 2019). 

Future work is needed to explore the interacting psychological conditions, including temporally 

extended learning and reward anticipation (Ballard et al., 2017; Yin & Knowlton, 2006), as well 

as factors such as stress (Schwabe & Wolf, 2009) and social motivation (Wood, 2017), 

underlying the development of long-lasting habitual goal selection. 

 

 Our results show that reward reinforcement creates persistent facilitation of rule-guided 

behavior at the expense of reduced cognitive flexibility. However, significant differences exist 

between the constructs in our task and real-world goal habits. A critical question for 

psychological research concerns the nature of reinforcement in ecological situations (Brewer & 

https://paperpile.com/c/uFH05H/wZb5+S4Sd
https://paperpile.com/c/uFH05H/wZb5+S4Sd
https://paperpile.com/c/uFH05H/asmW
https://paperpile.com/c/uFH05H/asmW
https://paperpile.com/c/uFH05H/gpCg+Up62
https://paperpile.com/c/uFH05H/asmW+OmPz
https://paperpile.com/c/uFH05H/fPN2
https://paperpile.com/c/uFH05H/JiSD
https://paperpile.com/c/uFH05H/R9ic
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Roy, 2021). Primary reinforcers, such as money or food, likely act alongside abstract 

reinforcers, such as goal attainment (McDougle et al., 2021; Swanson & Tricomi, 2014) in 

forming cognitive habits. The habit system is involved in a variety of disorders, including anxiety 

(Lago et al., 2017; Packard, 2009), OCD (Gillan et al., 2014; Gillan & Robbins, 2014), anorexia 

nervosa (Foerde et al., 2021; Steinglass & Walsh, 2006) and Parkinson’s disease (Cools, 2011; 

Dubois & Pillon, 1997). Understanding the role of cognitive habits in these disorders will require 

an account of whether and why the dopaminergic system reinforces maladaptive goals. Our 

study focused on the idea that a goal habit involves the habitual selection of a goal, which is 

then flexibility implemented (Cushman & Morris, 2015). Future work is needed to understand 

whether pursuing habitually selected goals has a temporally-extended influence on cognitive 

flexibility. An improved understanding of the etiology of cognitive habits may lead to novel 

strategies for acquiring adaptive habits and weakening habits that impair cognitive well-being. 

 

DATA AVAILABILITY STATEMENT 

All code and behavioral data will be available on GitHub prior to publication. 

 

AUTHOR CONTRIBUTIONS 

ICB: Conceptualization, Methodology, Software, Formal Analysis, Investigation, Data Curation, 

Writing- Original Draft, Visualization. MW: Conceptualization, Methodology, Writing- Review and 

Editing. KN: Methodology, Software, Formal Analysis, Investigation, Writing- Review and Editing. 

MD: Conceptualization, Methodology, Supervision, Funding Acquisition, Writing- Review and 

Editing.  

 

ACKNOWLEDGEMENTS 

We thank the D’Esposito lab and Cognitive Computational Neuroscience lab (PI: Anne Collins) 

for helpful discussions. We would also like to thank Debbie Yee, Ivan Grahek, and the HDDM 

online community for their advice on the HDDM package.  

 

FUNDING INFORMATION 

ICB is funded by the NIH fellowship F32MH119796. The research was supported by the National 

Institute of Health grant MH063901.   

 

REFERENCES 

https://paperpile.com/c/uFH05H/R9ic
https://paperpile.com/c/uFH05H/FnnO+3gfr
https://paperpile.com/c/uFH05H/m5FM+Bi48
https://paperpile.com/c/uFH05H/dT7Y+q7fq
https://paperpile.com/c/uFH05H/oEBt+mFMW
https://paperpile.com/c/uFH05H/ubVq+vl4f
https://paperpile.com/c/uFH05H/ubVq+vl4f
https://paperpile.com/c/uFH05H/ADiX


 

21 

Aarts, E., Roelofs, A., Franke, B., Rijpkema, M., Fernández, G., Helmich, R. C., & Cools, R. 

(2010). Striatal dopamine mediates the interface between motivational and cognitive control 

in humans: evidence from genetic imaging. Neuropsychopharmacology: Official Publication 

of the American College of Neuropsychopharmacology, 35(9), 1943–1951. 

https://doi.org/10.1038/npp.2010.68 

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally 

segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 

357–381. https://doi.org/10.1146/annurev.ne.09.030186.002041 

Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. 

Proceedings of the National Academy of Sciences of the United States of America, 

108(25), 10367–10371. https://doi.org/10.1073/pnas.1104047108 

Badre, D., & Frank, M. J. (2012). Mechanisms of Hierarchical Reinforcement Learning in 

Cortico–Striatal Circuits 2: Evidence from fMRI. Cerebral Cortex , 22(3), 527–536. 

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhr117 

Ballard, I. C., Hennigan, K., & McClure, S. M. (2017). Mere exposure: Preference change for 

novel drinks reflected in human ventral tegmental area. Journal of Cognitive Neuroscience. 

https://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_01098 

Ballard, I. C., Murty, V. P., Carter, R. M., MacInnes, J. J., Huettel, S. A., & Adcock, R. A. (2011). 

Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated 

behavior. The Journal of Neuroscience: The Official Journal of the Society for 

Neuroscience, 31(28), 10340–10346. https://doi.org/10.1523/JNEUROSCI.0895-11.2011 

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for 

confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 

255–278. https://doi.org/10.1016/j.jml.2012.11.001 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models 

Using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01 

http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://paperpile.com/b/uFH05H/wGaB
http://dx.doi.org/10.1038/npp.2010.68
http://paperpile.com/b/uFH05H/f8kt
http://paperpile.com/b/uFH05H/f8kt
http://paperpile.com/b/uFH05H/f8kt
http://paperpile.com/b/uFH05H/f8kt
http://paperpile.com/b/uFH05H/f8kt
http://paperpile.com/b/uFH05H/f8kt
http://paperpile.com/b/uFH05H/f8kt
http://dx.doi.org/10.1146/annurev.ne.09.030186.002041
http://paperpile.com/b/uFH05H/TkqH
http://paperpile.com/b/uFH05H/TkqH
http://paperpile.com/b/uFH05H/TkqH
http://paperpile.com/b/uFH05H/TkqH
http://paperpile.com/b/uFH05H/TkqH
http://paperpile.com/b/uFH05H/TkqH
http://paperpile.com/b/uFH05H/TkqH
http://dx.doi.org/10.1073/pnas.1104047108
http://paperpile.com/b/uFH05H/4cOL
http://paperpile.com/b/uFH05H/4cOL
http://paperpile.com/b/uFH05H/4cOL
http://paperpile.com/b/uFH05H/4cOL
http://paperpile.com/b/uFH05H/4cOL
http://paperpile.com/b/uFH05H/4cOL
http://paperpile.com/b/uFH05H/4cOL
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhr117
http://paperpile.com/b/uFH05H/OmPz
http://paperpile.com/b/uFH05H/OmPz
http://paperpile.com/b/uFH05H/OmPz
http://paperpile.com/b/uFH05H/OmPz
http://paperpile.com/b/uFH05H/OmPz
https://www.mitpressjournals.org/doi/abs/10.1162/jocn_a_01098
http://paperpile.com/b/uFH05H/fpBs
http://paperpile.com/b/uFH05H/fpBs
http://paperpile.com/b/uFH05H/fpBs
http://paperpile.com/b/uFH05H/fpBs
http://paperpile.com/b/uFH05H/fpBs
http://paperpile.com/b/uFH05H/fpBs
http://paperpile.com/b/uFH05H/fpBs
http://paperpile.com/b/uFH05H/fpBs
http://dx.doi.org/10.1523/JNEUROSCI.0895-11.2011
http://paperpile.com/b/uFH05H/7Jjn
http://paperpile.com/b/uFH05H/7Jjn
http://paperpile.com/b/uFH05H/7Jjn
http://paperpile.com/b/uFH05H/7Jjn
http://paperpile.com/b/uFH05H/7Jjn
http://paperpile.com/b/uFH05H/7Jjn
http://paperpile.com/b/uFH05H/7Jjn
http://dx.doi.org/10.1016/j.jml.2012.11.001
http://paperpile.com/b/uFH05H/ErMg
http://paperpile.com/b/uFH05H/ErMg
http://paperpile.com/b/uFH05H/ErMg
http://paperpile.com/b/uFH05H/ErMg
http://paperpile.com/b/uFH05H/ErMg
http://paperpile.com/b/uFH05H/ErMg
http://dx.doi.org/10.18637/jss.v067.i01


 

22 

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal 

decision making: a formal analysis of models of performance in two-alternative forced-

choice tasks. Psychological Review, 113(4), 700–765. https://doi.org/10.1037/0033-

295X.113.4.700 

Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: from behavior to neural 

mechanism. Annual Review of Psychology, 66, 83–113. https://doi.org/10.1146/annurev-

psych-010814-015044 

Brewer, J. A., & Roy, A. (2021). Can Approaching Anxiety Like a Habit Lead to Novel 

Treatments? American Journal of Lifestyle Medicine, 15(5), 489–494. 

https://doi.org/10.1177/15598276211008144 

Chiew, K. S., & Braver, T. S. (2014). Dissociable influences of reward motivation and positive 

emotion on cognitive control. Cognitive, Affective & Behavioral Neuroscience, 14(2), 509–

529. https://doi.org/10.3758/s13415-014-0280-0 

Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: creating, clustering, and 

generalizing task-set structure. Psychological Review, 120(1), 190–229. 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23356780&retmod

e=ref&cmd=prlinks 

Cools, R. (2011). Dopaminergic control of the striatum for high-level cognition. Current Opinion 

in Neurobiology, 21(3), 402–407. https://doi.org/10.1016/j.conb.2011.04.002 

Cools, R., & D’Esposito, M. (2011). Inverted-U–Shaped Dopamine Actions on Human Working 

Memory and Cognitive Control. Biological Psychiatry, 69(12), e113–e125. 

http://linkinghub.elsevier.com/retrieve/pii/S0006322311002782 

Cushman, F., & Morris, A. (2015). Habitual control of goal selection in humans. Proceedings of 

the National Academy of Sciences, 112(45), 13817–13822. 

https://doi.org/10.1073/pnas.1506367112 

Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and 

http://paperpile.com/b/uFH05H/7MtH
http://paperpile.com/b/uFH05H/7MtH
http://paperpile.com/b/uFH05H/7MtH
http://paperpile.com/b/uFH05H/7MtH
http://paperpile.com/b/uFH05H/7MtH
http://paperpile.com/b/uFH05H/7MtH
http://paperpile.com/b/uFH05H/7MtH
http://dx.doi.org/10.1037/0033-295X.113.4.700
http://dx.doi.org/10.1037/0033-295X.113.4.700
http://paperpile.com/b/uFH05H/okRy
http://paperpile.com/b/uFH05H/okRy
http://paperpile.com/b/uFH05H/okRy
http://paperpile.com/b/uFH05H/okRy
http://paperpile.com/b/uFH05H/okRy
http://paperpile.com/b/uFH05H/okRy
http://dx.doi.org/10.1146/annurev-psych-010814-015044
http://dx.doi.org/10.1146/annurev-psych-010814-015044
http://paperpile.com/b/uFH05H/R9ic
http://paperpile.com/b/uFH05H/R9ic
http://paperpile.com/b/uFH05H/R9ic
http://paperpile.com/b/uFH05H/R9ic
http://paperpile.com/b/uFH05H/R9ic
http://paperpile.com/b/uFH05H/R9ic
http://paperpile.com/b/uFH05H/R9ic
http://dx.doi.org/10.1177/15598276211008144
http://paperpile.com/b/uFH05H/WQuO
http://paperpile.com/b/uFH05H/WQuO
http://paperpile.com/b/uFH05H/WQuO
http://paperpile.com/b/uFH05H/WQuO
http://paperpile.com/b/uFH05H/WQuO
http://paperpile.com/b/uFH05H/WQuO
http://paperpile.com/b/uFH05H/WQuO
http://dx.doi.org/10.3758/s13415-014-0280-0
http://paperpile.com/b/uFH05H/DNV9
http://paperpile.com/b/uFH05H/DNV9
http://paperpile.com/b/uFH05H/DNV9
http://paperpile.com/b/uFH05H/DNV9
http://paperpile.com/b/uFH05H/DNV9
http://paperpile.com/b/uFH05H/DNV9
http://paperpile.com/b/uFH05H/DNV9
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23356780&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23356780&retmode=ref&cmd=prlinks
http://paperpile.com/b/uFH05H/ubVq
http://paperpile.com/b/uFH05H/ubVq
http://paperpile.com/b/uFH05H/ubVq
http://paperpile.com/b/uFH05H/ubVq
http://paperpile.com/b/uFH05H/ubVq
http://paperpile.com/b/uFH05H/ubVq
http://dx.doi.org/10.1016/j.conb.2011.04.002
http://paperpile.com/b/uFH05H/ppa3
http://paperpile.com/b/uFH05H/ppa3
http://paperpile.com/b/uFH05H/ppa3
http://paperpile.com/b/uFH05H/ppa3
http://paperpile.com/b/uFH05H/ppa3
http://paperpile.com/b/uFH05H/ppa3
http://paperpile.com/b/uFH05H/ppa3
http://linkinghub.elsevier.com/retrieve/pii/S0006322311002782
http://paperpile.com/b/uFH05H/ADiX
http://paperpile.com/b/uFH05H/ADiX
http://paperpile.com/b/uFH05H/ADiX
http://paperpile.com/b/uFH05H/ADiX
http://paperpile.com/b/uFH05H/ADiX
http://paperpile.com/b/uFH05H/ADiX
http://paperpile.com/b/uFH05H/ADiX
http://dx.doi.org/10.1073/pnas.1506367112
http://paperpile.com/b/uFH05H/8qL5


 

23 

losses. Psychological Science, 20(6), 778–784. https://doi.org/10.1111/j.1467-

9280.2009.02360.x 

DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in 

Neurosciences, 13(7), 281–285. https://doi.org/10.1016/0166-2236(90)90110-v 

de Wit, S., Kindt, M., Knot, S. L., Verhoeven, A. A. C., Robbins, T. W., Gasull-Camos, J., Evans, 

M., Mirza, H., & Gillan, C. M. (2018). Shifting the balance between goals and habits: Five 

failures in experimental habit induction. Journal of Experimental Psychology. General, 

147(7), 1043–1065. https://doi.org/10.1037/xge0000402 

Dobryakova, E., Jessup, R. K., & Tricomi, E. (2017). Modulation of ventral striatal activity by 

cognitive effort. NeuroImage, 147, 330–338. 

https://doi.org/10.1016/j.neuroimage.2016.12.029 

Dreisbach, G. (2006). How positive affect modulates cognitive control: the costs and benefits of 

reduced maintenance capability. Brain and Cognition, 60(1), 11–19. 

https://doi.org/10.1016/j.bandc.2005.08.003 

Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 

244(1), 2–8. https://doi.org/10.1007/pl00007725 

Dworkin, J. D., Linn, K. A., Teich, E. G., Zurn, P., Shinohara, R. T., & Bassett, D. S. (2020). The 

extent and drivers of gender imbalance in neuroscience reference lists. Nature 

Neuroscience, 23(8), 918–926. https://doi.org/10.1038/s41593-020-0658-y 

Eckstein, M. K., & Collins, A. G. E. (2020). Computational evidence for hierarchically structured 

reinforcement learning in humans. Proceedings of the National Academy of Sciences, 

117(47), 29381–29389. https://doi.org/10.1073/pnas.1912330117 

Etzel, J. A., Cole, M. W., Zacks, J. M., Kay, K. N., & Braver, T. S. (2016). Reward Motivation 

Enhances Task Coding in Frontoparietal Cortex. Cerebral Cortex , 26(4), 1647–1659. 

https://doi.org/10.1093/cercor/bhu327 

Failing, M. F., & Theeuwes, J. (2014). Exogenous visual orienting by reward. Journal of Vision, 

http://paperpile.com/b/uFH05H/8qL5
http://paperpile.com/b/uFH05H/8qL5
http://paperpile.com/b/uFH05H/8qL5
http://paperpile.com/b/uFH05H/8qL5
http://paperpile.com/b/uFH05H/8qL5
http://dx.doi.org/10.1111/j.1467-9280.2009.02360.x
http://dx.doi.org/10.1111/j.1467-9280.2009.02360.x
http://paperpile.com/b/uFH05H/l7B2
http://paperpile.com/b/uFH05H/l7B2
http://paperpile.com/b/uFH05H/l7B2
http://paperpile.com/b/uFH05H/l7B2
http://paperpile.com/b/uFH05H/l7B2
http://paperpile.com/b/uFH05H/l7B2
http://dx.doi.org/10.1016/0166-2236(90)90110-v
http://paperpile.com/b/uFH05H/gpCg
http://paperpile.com/b/uFH05H/gpCg
http://paperpile.com/b/uFH05H/gpCg
http://paperpile.com/b/uFH05H/gpCg
http://paperpile.com/b/uFH05H/gpCg
http://paperpile.com/b/uFH05H/gpCg
http://paperpile.com/b/uFH05H/gpCg
http://paperpile.com/b/uFH05H/gpCg
http://dx.doi.org/10.1037/xge0000402
http://paperpile.com/b/uFH05H/xPR6
http://paperpile.com/b/uFH05H/xPR6
http://paperpile.com/b/uFH05H/xPR6
http://paperpile.com/b/uFH05H/xPR6
http://paperpile.com/b/uFH05H/xPR6
http://paperpile.com/b/uFH05H/xPR6
http://paperpile.com/b/uFH05H/xPR6
http://dx.doi.org/10.1016/j.neuroimage.2016.12.029
http://paperpile.com/b/uFH05H/L18h
http://paperpile.com/b/uFH05H/L18h
http://paperpile.com/b/uFH05H/L18h
http://paperpile.com/b/uFH05H/L18h
http://paperpile.com/b/uFH05H/L18h
http://paperpile.com/b/uFH05H/L18h
http://paperpile.com/b/uFH05H/L18h
http://dx.doi.org/10.1016/j.bandc.2005.08.003
http://paperpile.com/b/uFH05H/vl4f
http://paperpile.com/b/uFH05H/vl4f
http://paperpile.com/b/uFH05H/vl4f
http://paperpile.com/b/uFH05H/vl4f
http://paperpile.com/b/uFH05H/vl4f
http://paperpile.com/b/uFH05H/vl4f
http://dx.doi.org/10.1007/pl00007725
http://paperpile.com/b/uFH05H/xmdk
http://paperpile.com/b/uFH05H/xmdk
http://paperpile.com/b/uFH05H/xmdk
http://paperpile.com/b/uFH05H/xmdk
http://paperpile.com/b/uFH05H/xmdk
http://paperpile.com/b/uFH05H/xmdk
http://paperpile.com/b/uFH05H/xmdk
http://dx.doi.org/10.1038/s41593-020-0658-y
http://paperpile.com/b/uFH05H/fulY
http://paperpile.com/b/uFH05H/fulY
http://paperpile.com/b/uFH05H/fulY
http://paperpile.com/b/uFH05H/fulY
http://paperpile.com/b/uFH05H/fulY
http://paperpile.com/b/uFH05H/fulY
http://paperpile.com/b/uFH05H/fulY
http://dx.doi.org/10.1073/pnas.1912330117
http://paperpile.com/b/uFH05H/ojkA
http://paperpile.com/b/uFH05H/ojkA
http://paperpile.com/b/uFH05H/ojkA
http://paperpile.com/b/uFH05H/ojkA
http://paperpile.com/b/uFH05H/ojkA
http://paperpile.com/b/uFH05H/ojkA
http://paperpile.com/b/uFH05H/ojkA
http://dx.doi.org/10.1093/cercor/bhu327
http://paperpile.com/b/uFH05H/W1BS
http://paperpile.com/b/uFH05H/W1BS
http://paperpile.com/b/uFH05H/W1BS


 

24 

14(5), 6. https://doi.org/10.1167/14.5.6 

Foerde, K., Walsh, B. T., Dalack, M., Daw, N., Shohamy, D., & Steinglass, J. E. (2021). 

Changes in brain and behavior during food-based decision-making following treatment of 

anorexia nervosa. Journal of Eating Disorders, 9(1), 48. https://doi.org/10.1186/s40337-

021-00402-y 

Frank, M. J. (2006). Hold your horses: a dynamic computational role for the subthalamic 

nucleus in decision making. Neural Networks: The Official Journal of the International 

Neural Network Society, 19(8), 1120–1136. https://doi.org/10.1016/j.neunet.2006.03.006 

Frank, M. J., & Badre, D. (2012). Mechanisms of Hierarchical Reinforcement Learning in 

Corticostriatal Circuits 1: Computational Analysis. Cerebral Cortex , 22(3), 509–526. 

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhr114 

Frömer, R., Lin, H., Dean Wolf, C. K., Inzlicht, M., & Shenhav, A. (2021). Expectations of reward 

and efficacy guide cognitive control allocation. Nature Communications, 12(1), 1–11. 

https://doi.org/10.1038/s41467-021-21315-z 

Fulvio, J. M., Akinnola, I., & Postle, B. R. (2021). Gender (Im)balance in Citation Practices in 

Cognitive Neuroscience. Journal of Cognitive Neuroscience, 33(1), 3–7. 

https://doi.org/10.1162/jocn_a_01643 

Gillan, C. M., Morein-Zamir, S., Urcelay, G. P., Sule, A., Voon, V., Apergis-Schoute, A. M., 

Fineberg, N. A., Sahakian, B. J., & Robbins, T. W. (2014). Enhanced avoidance habits in 

obsessive-compulsive disorder. Biological Psychiatry, 75(8), 631–638. 

https://doi.org/10.1016/j.biopsych.2013.02.002 

Gillan, C. M., & Robbins, T. W. (2014). Goal-directed learning and obsessive-compulsive 

disorder. Philosophical Transactions of the Royal Society of London. Series B, Biological 

Sciences, 369(1655). https://doi.org/10.1098/rstb.2013.0475 

Goltstein, P. M., Meijer, G. T., & Pennartz, C. M. A. (2018). Conditioning sharpens the spatial 

representation of rewarded stimuli in mouse primary visual cortex. eLife, 7, e37683. 

http://paperpile.com/b/uFH05H/W1BS
http://paperpile.com/b/uFH05H/W1BS
http://dx.doi.org/10.1167/14.5.6
http://paperpile.com/b/uFH05H/mFMW
http://paperpile.com/b/uFH05H/mFMW
http://paperpile.com/b/uFH05H/mFMW
http://paperpile.com/b/uFH05H/mFMW
http://paperpile.com/b/uFH05H/mFMW
http://paperpile.com/b/uFH05H/mFMW
http://paperpile.com/b/uFH05H/mFMW
http://dx.doi.org/10.1186/s40337-021-00402-y
http://dx.doi.org/10.1186/s40337-021-00402-y
http://paperpile.com/b/uFH05H/RlK5
http://paperpile.com/b/uFH05H/RlK5
http://paperpile.com/b/uFH05H/RlK5
http://paperpile.com/b/uFH05H/RlK5
http://paperpile.com/b/uFH05H/RlK5
http://paperpile.com/b/uFH05H/RlK5
http://paperpile.com/b/uFH05H/RlK5
http://dx.doi.org/10.1016/j.neunet.2006.03.006
http://paperpile.com/b/uFH05H/kcP6
http://paperpile.com/b/uFH05H/kcP6
http://paperpile.com/b/uFH05H/kcP6
http://paperpile.com/b/uFH05H/kcP6
http://paperpile.com/b/uFH05H/kcP6
http://paperpile.com/b/uFH05H/kcP6
http://paperpile.com/b/uFH05H/kcP6
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhr114
http://paperpile.com/b/uFH05H/EToA
http://paperpile.com/b/uFH05H/EToA
http://paperpile.com/b/uFH05H/EToA
http://paperpile.com/b/uFH05H/EToA
http://paperpile.com/b/uFH05H/EToA
http://paperpile.com/b/uFH05H/EToA
http://paperpile.com/b/uFH05H/EToA
http://dx.doi.org/10.1038/s41467-021-21315-z
http://paperpile.com/b/uFH05H/vgWP
http://paperpile.com/b/uFH05H/vgWP
http://paperpile.com/b/uFH05H/vgWP
http://paperpile.com/b/uFH05H/vgWP
http://paperpile.com/b/uFH05H/vgWP
http://paperpile.com/b/uFH05H/vgWP
http://paperpile.com/b/uFH05H/vgWP
http://dx.doi.org/10.1162/jocn_a_01643
http://paperpile.com/b/uFH05H/q7fq
http://paperpile.com/b/uFH05H/q7fq
http://paperpile.com/b/uFH05H/q7fq
http://paperpile.com/b/uFH05H/q7fq
http://paperpile.com/b/uFH05H/q7fq
http://paperpile.com/b/uFH05H/q7fq
http://paperpile.com/b/uFH05H/q7fq
http://paperpile.com/b/uFH05H/q7fq
http://dx.doi.org/10.1016/j.biopsych.2013.02.002
http://paperpile.com/b/uFH05H/dT7Y
http://paperpile.com/b/uFH05H/dT7Y
http://paperpile.com/b/uFH05H/dT7Y
http://paperpile.com/b/uFH05H/dT7Y
http://paperpile.com/b/uFH05H/dT7Y
http://paperpile.com/b/uFH05H/dT7Y
http://paperpile.com/b/uFH05H/dT7Y
http://dx.doi.org/10.1098/rstb.2013.0475
http://paperpile.com/b/uFH05H/p9Ku
http://paperpile.com/b/uFH05H/p9Ku
http://paperpile.com/b/uFH05H/p9Ku
http://paperpile.com/b/uFH05H/p9Ku
http://paperpile.com/b/uFH05H/p9Ku
http://paperpile.com/b/uFH05H/p9Ku


 

25 

https://doi.org/10.7554/eLife.37683 

Grahek, I., Schettino, A., Koster, E. H. W., & Andersen, S. K. (2021). Dynamic Interplay 

between Reward and Voluntary Attention Determines Stimulus Processing in Visual Cortex. 

Journal of Cognitive Neuroscience, 33(11), 2357–2371. 

https://doi.org/10.1162/jocn_a_01762 

Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of 

Learning and Memory, 70(1-2), 119–136. 

http://linkinghub.elsevier.com/retrieve/pii/S1074742798938436 

Haber, S. N. (2012). Neuroanatomy of Reward: A View from the Ventral Striatum. In J. A. 

Gottfried (Ed.), Neurobiology of Sensation and Reward. CRC Press/Taylor & Francis. 

https://www.ncbi.nlm.nih.gov/pubmed/22593898 

Hardwick, R. M., Forrence, A. D., Krakauer, J. W., & Haith, A. M. (2019). Time-dependent 

competition between goal-directed and habitual response preparation. Nature Human 

Behaviour, 3(12), 1252–1262. https://doi.org/10.1038/s41562-019-0725-0 

Hickey, C., Kaiser, D., & Peelen, M. V. (2015). Reward guides attention to object categories in 

real-world scenes. Journal of Experimental Psychology. General, 144(2), 264–273. 

https://doi.org/10.1037/a0038627 

Hunter, L. E., & Daw, N. D. (2021). Context-sensitive valuation and learning. Current Opinion in 

Behavioral Sciences, 41, 122–127. https://doi.org/10.1016/j.cobeha.2021.05.001 

Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in 

humans - ProQuest. Science. 

http://search.proquest.com/openview/16908e7d27610a0e04267a4b47d48b12/1?pq-

origsite=gscholar&cbl=1256 

Kool, W., Shenhav, A., & Botvinick, M. M. (2017). Cognitive control as cost-benefit decision 

making. In The Wiley Handbook of Cognitive Control (pp. 167–189). John Wiley & Sons, 

Ltd. https://doi.org/10.1002/9781118920497.ch10 

http://paperpile.com/b/uFH05H/p9Ku
http://dx.doi.org/10.7554/eLife.37683
http://paperpile.com/b/uFH05H/XUrg
http://paperpile.com/b/uFH05H/XUrg
http://paperpile.com/b/uFH05H/XUrg
http://paperpile.com/b/uFH05H/XUrg
http://paperpile.com/b/uFH05H/XUrg
http://paperpile.com/b/uFH05H/XUrg
http://paperpile.com/b/uFH05H/XUrg
http://dx.doi.org/10.1162/jocn_a_01762
http://paperpile.com/b/uFH05H/ZHDP
http://paperpile.com/b/uFH05H/ZHDP
http://paperpile.com/b/uFH05H/ZHDP
http://paperpile.com/b/uFH05H/ZHDP
http://paperpile.com/b/uFH05H/ZHDP
http://paperpile.com/b/uFH05H/ZHDP
http://paperpile.com/b/uFH05H/ZHDP
http://linkinghub.elsevier.com/retrieve/pii/S1074742798938436
http://paperpile.com/b/uFH05H/vyws
http://paperpile.com/b/uFH05H/vyws
http://paperpile.com/b/uFH05H/vyws
http://paperpile.com/b/uFH05H/vyws
http://paperpile.com/b/uFH05H/vyws
https://www.ncbi.nlm.nih.gov/pubmed/22593898
http://paperpile.com/b/uFH05H/Up62
http://paperpile.com/b/uFH05H/Up62
http://paperpile.com/b/uFH05H/Up62
http://paperpile.com/b/uFH05H/Up62
http://paperpile.com/b/uFH05H/Up62
http://paperpile.com/b/uFH05H/Up62
http://paperpile.com/b/uFH05H/Up62
http://dx.doi.org/10.1038/s41562-019-0725-0
http://paperpile.com/b/uFH05H/f5Jb
http://paperpile.com/b/uFH05H/f5Jb
http://paperpile.com/b/uFH05H/f5Jb
http://paperpile.com/b/uFH05H/f5Jb
http://paperpile.com/b/uFH05H/f5Jb
http://paperpile.com/b/uFH05H/f5Jb
http://paperpile.com/b/uFH05H/f5Jb
http://dx.doi.org/10.1037/a0038627
http://paperpile.com/b/uFH05H/S4Sd
http://paperpile.com/b/uFH05H/S4Sd
http://paperpile.com/b/uFH05H/S4Sd
http://paperpile.com/b/uFH05H/S4Sd
http://paperpile.com/b/uFH05H/S4Sd
http://paperpile.com/b/uFH05H/S4Sd
http://dx.doi.org/10.1016/j.cobeha.2021.05.001
http://paperpile.com/b/uFH05H/b5lb
http://paperpile.com/b/uFH05H/b5lb
http://paperpile.com/b/uFH05H/b5lb
http://paperpile.com/b/uFH05H/b5lb
http://paperpile.com/b/uFH05H/b5lb
http://search.proquest.com/openview/16908e7d27610a0e04267a4b47d48b12/1?pq-origsite=gscholar&cbl=1256
http://search.proquest.com/openview/16908e7d27610a0e04267a4b47d48b12/1?pq-origsite=gscholar&cbl=1256
http://paperpile.com/b/uFH05H/u5va
http://paperpile.com/b/uFH05H/u5va
http://paperpile.com/b/uFH05H/u5va
http://paperpile.com/b/uFH05H/u5va
http://paperpile.com/b/uFH05H/u5va
http://dx.doi.org/10.1002/9781118920497.ch10


 

26 

Krawczyk, D. C., & D’Esposito, M. (2013). Modulation of working memory function by motivation 

through loss-aversion. Human Brain Mapping, 34(4), 762–774. 

https://doi.org/10.1002/hbm.21472 

Krebs, R. M., & Woldorff, M. G. (2017). Cognitive control and reward. In T. Egner (Ed.), The 

Wiley handbook of cognitive control , (pp (Vol. 642, pp. 422–439). 

https://doi.org/10.1002/9781118920497.ch24 

Lago, T., Davis, A., Grillon, C., & Ernst, M. (2017). Striatum on the anxiety map: Small detours 

into adolescence. Brain Research, 1654(Pt B), 177–184. 

https://doi.org/10.1016/j.brainres.2016.06.006 

Law, C.-T., & Gold, J. I. (2008). Neural correlates of perceptual learning in a sensory-motor, but 

not a sensory, cortical area. Nature Neuroscience, 11(4), 505–513. 

https://doi.org/10.1038/nn2070 

Leong, Y. C., Hughes, B. L., Wang, Y., & Zaki, J. (2019). Neurocomputational mechanisms 

underlying motivated seeing. Nature Human Behaviour, 3(9), 962–973. 

https://doi.org/10.1038/s41562-019-0637-z 

Lhermitte, F. (1983). “Utilization behaviour”and its relation to lesions of the frontal lobes. Brain: 

A Journal of Neurology, 106(2), 237–255. https://academic.oup.com/brain/article-

abstract/106/2/237/299596 

Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: behavior, brain 

activation, and individual differences. Cognitive, Affective & Behavioral Neuroscience, 8(1), 

99–112. https://doi.org/10.3758/cabn.8.1.99 

McDougle, S. D., Ballard, I. C., Baribault, B., Bishop, S. J., & Collins, A. G. E. (2021). Executive 

Function Assigns Value to Novel Goal-Congruent Outcomes. Cerebral Cortex , 32(1), 231–

247. https://doi.org/10.1093/cercor/bhab205 

Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: categories, concepts 

and cognition. Philosophical Transactions of the Royal Society of London. Series B, 

http://paperpile.com/b/uFH05H/Ukr5
http://paperpile.com/b/uFH05H/Ukr5
http://paperpile.com/b/uFH05H/Ukr5
http://paperpile.com/b/uFH05H/Ukr5
http://paperpile.com/b/uFH05H/Ukr5
http://paperpile.com/b/uFH05H/Ukr5
http://paperpile.com/b/uFH05H/Ukr5
http://dx.doi.org/10.1002/hbm.21472
http://paperpile.com/b/uFH05H/rEcQ
http://paperpile.com/b/uFH05H/rEcQ
http://paperpile.com/b/uFH05H/rEcQ
http://paperpile.com/b/uFH05H/rEcQ
http://paperpile.com/b/uFH05H/rEcQ
http://dx.doi.org/10.1002/9781118920497.ch24
http://paperpile.com/b/uFH05H/Bi48
http://paperpile.com/b/uFH05H/Bi48
http://paperpile.com/b/uFH05H/Bi48
http://paperpile.com/b/uFH05H/Bi48
http://paperpile.com/b/uFH05H/Bi48
http://paperpile.com/b/uFH05H/Bi48
http://paperpile.com/b/uFH05H/Bi48
http://dx.doi.org/10.1016/j.brainres.2016.06.006
http://paperpile.com/b/uFH05H/bxPD
http://paperpile.com/b/uFH05H/bxPD
http://paperpile.com/b/uFH05H/bxPD
http://paperpile.com/b/uFH05H/bxPD
http://paperpile.com/b/uFH05H/bxPD
http://paperpile.com/b/uFH05H/bxPD
http://paperpile.com/b/uFH05H/bxPD
http://dx.doi.org/10.1038/nn2070
http://paperpile.com/b/uFH05H/srgd
http://paperpile.com/b/uFH05H/srgd
http://paperpile.com/b/uFH05H/srgd
http://paperpile.com/b/uFH05H/srgd
http://paperpile.com/b/uFH05H/srgd
http://paperpile.com/b/uFH05H/srgd
http://paperpile.com/b/uFH05H/srgd
http://dx.doi.org/10.1038/s41562-019-0637-z
http://paperpile.com/b/uFH05H/JLm3
http://paperpile.com/b/uFH05H/JLm3
http://paperpile.com/b/uFH05H/JLm3
http://paperpile.com/b/uFH05H/JLm3
http://paperpile.com/b/uFH05H/JLm3
http://paperpile.com/b/uFH05H/JLm3
https://academic.oup.com/brain/article-abstract/106/2/237/299596
https://academic.oup.com/brain/article-abstract/106/2/237/299596
http://paperpile.com/b/uFH05H/Ufwd
http://paperpile.com/b/uFH05H/Ufwd
http://paperpile.com/b/uFH05H/Ufwd
http://paperpile.com/b/uFH05H/Ufwd
http://paperpile.com/b/uFH05H/Ufwd
http://paperpile.com/b/uFH05H/Ufwd
http://paperpile.com/b/uFH05H/Ufwd
http://dx.doi.org/10.3758/cabn.8.1.99
http://paperpile.com/b/uFH05H/FnnO
http://paperpile.com/b/uFH05H/FnnO
http://paperpile.com/b/uFH05H/FnnO
http://paperpile.com/b/uFH05H/FnnO
http://paperpile.com/b/uFH05H/FnnO
http://paperpile.com/b/uFH05H/FnnO
http://paperpile.com/b/uFH05H/FnnO
http://dx.doi.org/10.1093/cercor/bhab205
http://paperpile.com/b/uFH05H/XVzR
http://paperpile.com/b/uFH05H/XVzR
http://paperpile.com/b/uFH05H/XVzR


 

27 

Biological Sciences, 357(1424), 1123–1136. https://doi.org/10.1098/rstb.2002.1099 

Murty, V. P., Tompary, A., Adcock, R. A., & Davachi, L. (2017). Selectivity in Postencoding 

Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory. 

The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(3), 

537–545. https://doi.org/10.1523/JNEUROSCI.4032-15.2016 

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 

139–154. http://linkinghub.elsevier.com/retrieve/pii/S0022249608001181 

Niv, Y., Daw, N. D., Joel, D., & Dayan, P. (2006). Tonic dopamine: opportunity costs and the 

control of response vigor. Psychopharmacology, 191(3), 507–520. 

http://www.springerlink.com/index/10.1007/s00213-006-0502-4 

O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of 

learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283–328. 

http://www.mitpressjournals.org/doi/10.1162/089976606775093909 

Packard, M. G. (2009). Anxiety, cognition, and habit: a multiple memory systems perspective. 

Brain Research, 1293, 121–128. https://doi.org/10.1016/j.brainres.2009.03.029 

Radulescu, A., Niv, Y., & Ballard, I. (2019). Holistic Reinforcement Learning: The Role of 

Structure and Attention. Trends in Cognitive Sciences, 23(4), 278–292. 

https://doi.org/10.1016/j.tics.2019.01.010 

Ribas-Fernandes, J. J. F., Solway, A., Diuk, C., McGuire, J. T., Barto, A. G., Niv, Y., & Botvinick, 

M. M. (2011). A Neural Signature of Hierarchical Reinforcement Learning. Neuron, 71(2), 

370–379. http://linkinghub.elsevier.com/retrieve/pii/S0896627311004995 

Rmus, M., McDougle, S. D., & Collins, A. G. E. (2021). The Role of Executive Function in 

Shaping Reinforcement Learning. Current Opinion in Behavioral Sciences, 38, 66–73. 

https://doi.org/10.1016/j.cobeha.2020.10.003 

Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on 

reinforcers and attention. Trends in Cognitive Sciences, 14(2), 64–71. 

http://paperpile.com/b/uFH05H/XVzR
http://paperpile.com/b/uFH05H/XVzR
http://paperpile.com/b/uFH05H/XVzR
http://paperpile.com/b/uFH05H/XVzR
http://dx.doi.org/10.1098/rstb.2002.1099
http://paperpile.com/b/uFH05H/vxq7
http://paperpile.com/b/uFH05H/vxq7
http://paperpile.com/b/uFH05H/vxq7
http://paperpile.com/b/uFH05H/vxq7
http://paperpile.com/b/uFH05H/vxq7
http://paperpile.com/b/uFH05H/vxq7
http://paperpile.com/b/uFH05H/vxq7
http://dx.doi.org/10.1523/JNEUROSCI.4032-15.2016
http://paperpile.com/b/uFH05H/BU5q
http://paperpile.com/b/uFH05H/BU5q
http://paperpile.com/b/uFH05H/BU5q
http://paperpile.com/b/uFH05H/BU5q
http://paperpile.com/b/uFH05H/BU5q
http://paperpile.com/b/uFH05H/BU5q
http://linkinghub.elsevier.com/retrieve/pii/S0022249608001181
http://paperpile.com/b/uFH05H/Siia
http://paperpile.com/b/uFH05H/Siia
http://paperpile.com/b/uFH05H/Siia
http://paperpile.com/b/uFH05H/Siia
http://paperpile.com/b/uFH05H/Siia
http://paperpile.com/b/uFH05H/Siia
http://paperpile.com/b/uFH05H/Siia
http://www.springerlink.com/index/10.1007/s00213-006-0502-4
http://paperpile.com/b/uFH05H/ktal
http://paperpile.com/b/uFH05H/ktal
http://paperpile.com/b/uFH05H/ktal
http://paperpile.com/b/uFH05H/ktal
http://paperpile.com/b/uFH05H/ktal
http://paperpile.com/b/uFH05H/ktal
http://paperpile.com/b/uFH05H/ktal
http://www.mitpressjournals.org/doi/10.1162/089976606775093909
http://paperpile.com/b/uFH05H/m5FM
http://paperpile.com/b/uFH05H/m5FM
http://paperpile.com/b/uFH05H/m5FM
http://paperpile.com/b/uFH05H/m5FM
http://paperpile.com/b/uFH05H/m5FM
http://paperpile.com/b/uFH05H/m5FM
http://dx.doi.org/10.1016/j.brainres.2009.03.029
http://paperpile.com/b/uFH05H/6WR9
http://paperpile.com/b/uFH05H/6WR9
http://paperpile.com/b/uFH05H/6WR9
http://paperpile.com/b/uFH05H/6WR9
http://paperpile.com/b/uFH05H/6WR9
http://paperpile.com/b/uFH05H/6WR9
http://paperpile.com/b/uFH05H/6WR9
http://dx.doi.org/10.1016/j.tics.2019.01.010
http://paperpile.com/b/uFH05H/G7Cv
http://paperpile.com/b/uFH05H/G7Cv
http://paperpile.com/b/uFH05H/G7Cv
http://paperpile.com/b/uFH05H/G7Cv
http://paperpile.com/b/uFH05H/G7Cv
http://paperpile.com/b/uFH05H/G7Cv
http://paperpile.com/b/uFH05H/G7Cv
http://linkinghub.elsevier.com/retrieve/pii/S0896627311004995
http://paperpile.com/b/uFH05H/Yy44
http://paperpile.com/b/uFH05H/Yy44
http://paperpile.com/b/uFH05H/Yy44
http://paperpile.com/b/uFH05H/Yy44
http://paperpile.com/b/uFH05H/Yy44
http://paperpile.com/b/uFH05H/Yy44
http://paperpile.com/b/uFH05H/Yy44
http://dx.doi.org/10.1016/j.cobeha.2020.10.003
http://paperpile.com/b/uFH05H/hbh5
http://paperpile.com/b/uFH05H/hbh5
http://paperpile.com/b/uFH05H/hbh5
http://paperpile.com/b/uFH05H/hbh5
http://paperpile.com/b/uFH05H/hbh5
http://paperpile.com/b/uFH05H/hbh5


 

28 

https://doi.org/10.1016/j.tics.2009.11.005 

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information 

processing: I. Detection, search, and attention. Psychological Review, 84(1), 1. 

https://psycnet.apa.org/journals/rev/84/1/1/ 

Schwabe, L., & Wolf, O. T. (2009). Stress Prompts Habit Behavior in Humans. The Journal of 

Neuroscience: The Official Journal of the Society for Neuroscience, 29(22), 7191–7198. 

http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0979-09.2009 

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an 

integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. 

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23889930&retmod

e=ref&cmd=prlinks 

Solley, C. M., & Murphy, G. (1960). Effects of Practice and Reward. In C. M. &. M. Solley (Ed.), 

Development of the perceptual world , (pp (Vol. 353, pp. 81–103). Basic Books, xiv. 

https://doi.org/10.1037/11120-005 

Son, L. K., & Sethi, R. (2006). Metacognitive control and optimal learning. Cognitive Science, 

30(4), 759–774. https://doi.org/10.1207/s15516709cog0000_74 

Steinglass, J., & Walsh, B. T. (2006). Habit learning and anorexia nervosa: a cognitive 

neuroscience hypothesis. The International Journal of Eating Disorders, 39(4), 267–275. 

https://doi.org/10.1002/eat.20244 

Sullivan-Toole, H., Richey, J. A., & Tricomi, E. (2017). Control and Effort Costs Influence the 

Motivational Consequences of Choice. Frontiers in Psychology, 8, 675. 

https://doi.org/10.3389/fpsyg.2017.00675 

Swanson, S. D., & Tricomi, E. (2014). Goals and task difficulty expectations modulate striatal 

responses to feedback. Cognitive, Affective & Behavioral Neuroscience, 14(2), 610–620. 

http://link.springer.com/article/10.3758/s13415-014-0269-8 

Tajima, S., Drugowitsch, J., & Pouget, A. (2016). Optimal policy for value-based decision-

http://paperpile.com/b/uFH05H/hbh5
http://dx.doi.org/10.1016/j.tics.2009.11.005
http://paperpile.com/b/uFH05H/WMj4
http://paperpile.com/b/uFH05H/WMj4
http://paperpile.com/b/uFH05H/WMj4
http://paperpile.com/b/uFH05H/WMj4
http://paperpile.com/b/uFH05H/WMj4
http://paperpile.com/b/uFH05H/WMj4
http://paperpile.com/b/uFH05H/WMj4
https://psycnet.apa.org/journals/rev/84/1/1/
http://paperpile.com/b/uFH05H/fPN2
http://paperpile.com/b/uFH05H/fPN2
http://paperpile.com/b/uFH05H/fPN2
http://paperpile.com/b/uFH05H/fPN2
http://paperpile.com/b/uFH05H/fPN2
http://paperpile.com/b/uFH05H/fPN2
http://paperpile.com/b/uFH05H/fPN2
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0979-09.2009
http://paperpile.com/b/uFH05H/B7yM
http://paperpile.com/b/uFH05H/B7yM
http://paperpile.com/b/uFH05H/B7yM
http://paperpile.com/b/uFH05H/B7yM
http://paperpile.com/b/uFH05H/B7yM
http://paperpile.com/b/uFH05H/B7yM
http://paperpile.com/b/uFH05H/B7yM
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23889930&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23889930&retmode=ref&cmd=prlinks
http://paperpile.com/b/uFH05H/WwHD
http://paperpile.com/b/uFH05H/WwHD
http://paperpile.com/b/uFH05H/WwHD
http://paperpile.com/b/uFH05H/WwHD
http://paperpile.com/b/uFH05H/WwHD
http://dx.doi.org/10.1037/11120-005
http://paperpile.com/b/uFH05H/c4Ut
http://paperpile.com/b/uFH05H/c4Ut
http://paperpile.com/b/uFH05H/c4Ut
http://paperpile.com/b/uFH05H/c4Ut
http://paperpile.com/b/uFH05H/c4Ut
http://paperpile.com/b/uFH05H/c4Ut
http://dx.doi.org/10.1207/s15516709cog0000_74
http://paperpile.com/b/uFH05H/oEBt
http://paperpile.com/b/uFH05H/oEBt
http://paperpile.com/b/uFH05H/oEBt
http://paperpile.com/b/uFH05H/oEBt
http://paperpile.com/b/uFH05H/oEBt
http://paperpile.com/b/uFH05H/oEBt
http://paperpile.com/b/uFH05H/oEBt
http://dx.doi.org/10.1002/eat.20244
http://paperpile.com/b/uFH05H/xenG
http://paperpile.com/b/uFH05H/xenG
http://paperpile.com/b/uFH05H/xenG
http://paperpile.com/b/uFH05H/xenG
http://paperpile.com/b/uFH05H/xenG
http://paperpile.com/b/uFH05H/xenG
http://paperpile.com/b/uFH05H/xenG
http://dx.doi.org/10.3389/fpsyg.2017.00675
http://paperpile.com/b/uFH05H/3gfr
http://paperpile.com/b/uFH05H/3gfr
http://paperpile.com/b/uFH05H/3gfr
http://paperpile.com/b/uFH05H/3gfr
http://paperpile.com/b/uFH05H/3gfr
http://paperpile.com/b/uFH05H/3gfr
http://paperpile.com/b/uFH05H/3gfr
http://link.springer.com/article/10.3758/s13415-014-0269-8
http://paperpile.com/b/uFH05H/g8Tw


 

29 

making. Nature Communications, 7(1), 1–12. https://doi.org/10.1038/ncomms12400 

Tversky, A., & Kahneman, D. (1986). Rational Choice and the Framing of Decisions. The 

Journal of Business, 59(4), S251–S278. http://www.jstor.org/stable/2352759 

Vandaele, Y., & Ahmed, S. H. (2021). Habit, choice, and addiction. Neuropsychopharmacology: 

Official Publication of the American College of Neuropsychopharmacology, 46(4), 689–698. 

https://doi.org/10.1038/s41386-020-00899-y 

Versace, F., Robinson, J. D., Lam, C. Y., Minnix, J. A., Brown, V. L., Carter, B. L., Wetter, D. 

W., & Cinciripini, P. M. (2010). Cigarette cues capture smokers’ attention: evidence from 

event-related potentials. Psychophysiology, 47(3), 435–441. https://doi.org/10.1111/j.1469-

8986.2009.00946.x 

Voon, V., Baek, K., Enander, J., Worbe, Y., Morris, L. S., Harrison, N. A., Robbins, T. W., Rück, 

C., & Daw, N. (2015). Motivation and value influences in the relative balance of goal-

directed and habitual behaviours in obsessive-compulsive disorder. Translational 

Psychiatry, 5(11), e670–e670. https://doi.org/10.1038/tp.2015.165 

Wallis, J. D., Anderson, K. C., & Miller, E. K. (2001). Single neurons in prefrontal cortex encode 

abstract rules. Nature, 411(6840), 953. https://www-nature-

com.stanford.idm.oclc.org/articles/35082081 

Waskom, M. (2021). seaborn: statistical data visualization. Journal of Open Source Software, 

6(60), 3021. https://doi.org/10.21105/joss.03021 

Waskom, M. L., Kumaran, D., Gordon, A. M., Rissman, J., & Wagner, A. D. (2014). 

Frontoparietal Representations of Task Context Support the Flexible Control of Goal-

Directed Cognition. The Journal of Neuroscience: The Official Journal of the Society for 

Neuroscience, 34(32), 10743–10755. https://doi.org/10.1523/JNEUROSCI.5282-13.2014 

Waskom, M. L., Okazawa, G., & Kiani, R. (2019). Designing and Interpreting Psychophysical 

Investigations of Cognition. Neuron, 104(1), 100–112. 

https://doi.org/10.1016/j.neuron.2019.09.016 

http://paperpile.com/b/uFH05H/g8Tw
http://paperpile.com/b/uFH05H/g8Tw
http://paperpile.com/b/uFH05H/g8Tw
http://paperpile.com/b/uFH05H/g8Tw
http://paperpile.com/b/uFH05H/g8Tw
http://dx.doi.org/10.1038/ncomms12400
http://paperpile.com/b/uFH05H/wZb5
http://paperpile.com/b/uFH05H/wZb5
http://paperpile.com/b/uFH05H/wZb5
http://paperpile.com/b/uFH05H/wZb5
http://paperpile.com/b/uFH05H/wZb5
http://paperpile.com/b/uFH05H/wZb5
http://www.jstor.org/stable/2352759
http://paperpile.com/b/uFH05H/sqk8
http://paperpile.com/b/uFH05H/sqk8
http://paperpile.com/b/uFH05H/sqk8
http://paperpile.com/b/uFH05H/sqk8
http://paperpile.com/b/uFH05H/sqk8
http://paperpile.com/b/uFH05H/sqk8
http://paperpile.com/b/uFH05H/sqk8
http://dx.doi.org/10.1038/s41386-020-00899-y
http://paperpile.com/b/uFH05H/YrZn
http://paperpile.com/b/uFH05H/YrZn
http://paperpile.com/b/uFH05H/YrZn
http://paperpile.com/b/uFH05H/YrZn
http://paperpile.com/b/uFH05H/YrZn
http://paperpile.com/b/uFH05H/YrZn
http://paperpile.com/b/uFH05H/YrZn
http://dx.doi.org/10.1111/j.1469-8986.2009.00946.x
http://dx.doi.org/10.1111/j.1469-8986.2009.00946.x
http://paperpile.com/b/uFH05H/ohIw
http://paperpile.com/b/uFH05H/ohIw
http://paperpile.com/b/uFH05H/ohIw
http://paperpile.com/b/uFH05H/ohIw
http://paperpile.com/b/uFH05H/ohIw
http://paperpile.com/b/uFH05H/ohIw
http://paperpile.com/b/uFH05H/ohIw
http://paperpile.com/b/uFH05H/ohIw
http://dx.doi.org/10.1038/tp.2015.165
http://paperpile.com/b/uFH05H/mw3L
http://paperpile.com/b/uFH05H/mw3L
http://paperpile.com/b/uFH05H/mw3L
http://paperpile.com/b/uFH05H/mw3L
http://paperpile.com/b/uFH05H/mw3L
http://paperpile.com/b/uFH05H/mw3L
https://www-nature-com.stanford.idm.oclc.org/articles/35082081
https://www-nature-com.stanford.idm.oclc.org/articles/35082081
http://paperpile.com/b/uFH05H/iZ3y
http://paperpile.com/b/uFH05H/iZ3y
http://paperpile.com/b/uFH05H/iZ3y
http://paperpile.com/b/uFH05H/iZ3y
http://paperpile.com/b/uFH05H/iZ3y
http://paperpile.com/b/uFH05H/iZ3y
http://dx.doi.org/10.21105/joss.03021
http://paperpile.com/b/uFH05H/qM84
http://paperpile.com/b/uFH05H/qM84
http://paperpile.com/b/uFH05H/qM84
http://paperpile.com/b/uFH05H/qM84
http://paperpile.com/b/uFH05H/qM84
http://paperpile.com/b/uFH05H/qM84
http://paperpile.com/b/uFH05H/qM84
http://paperpile.com/b/uFH05H/qM84
http://dx.doi.org/10.1523/JNEUROSCI.5282-13.2014
http://paperpile.com/b/uFH05H/UwZw
http://paperpile.com/b/uFH05H/UwZw
http://paperpile.com/b/uFH05H/UwZw
http://paperpile.com/b/uFH05H/UwZw
http://paperpile.com/b/uFH05H/UwZw
http://paperpile.com/b/uFH05H/UwZw
http://paperpile.com/b/uFH05H/UwZw
http://dx.doi.org/10.1016/j.neuron.2019.09.016


 

30 

Waskom, M. L., & Wagner, A. D. (2017). Distributed representation of context by intrinsic 

subnetworks in prefrontal cortex. Proceedings of the National Academy of Sciences, 

114(8), 2030–2035. http://www.pnas.org/lookup/doi/10.1073/pnas.1615269114 

Weintraub, D. (2008). Dopamine and impulse control disorders in Parkinson’s disease. Annals 

of Neurology, 64 Suppl 2(Suppl 2), S93–S100. https://doi.org/10.1002/ana.21454 

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the 

Drift-Diffusion Model in Python. Frontiers in Neuroinformatics, 7, 14. 

https://doi.org/10.3389/fninf.2013.00014 

Wilson, R. C., & Collins, A. G. E. (2019). Ten simple rules for the computational modeling of 

behavioral data. eLife, 8, e49547. https://doi.org/10.7554/eLife.49547 

Wood, W. (2017). Habit in Personality and Social Psychology. Personality and Social 

Psychology Review: An Official Journal of the Society for Personality and Social 

Psychology, Inc, 21(4), 389–403. https://doi.org/10.1177/1088868317720362 

Wood, W., & Rünger, D. (2016). Psychology of Habit. Annual Review of Psychology, 67(1), 

289–314. https://doi.org/10.1146/annurev-psych-122414-033417 

Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature 

Reviews. Neuroscience, 7(6), 464–476. http://www.nature.com/doifinder/10.1038/nrn1919 

 

http://paperpile.com/b/uFH05H/cRmJ
http://paperpile.com/b/uFH05H/cRmJ
http://paperpile.com/b/uFH05H/cRmJ
http://paperpile.com/b/uFH05H/cRmJ
http://paperpile.com/b/uFH05H/cRmJ
http://paperpile.com/b/uFH05H/cRmJ
http://paperpile.com/b/uFH05H/cRmJ
http://www.pnas.org/lookup/doi/10.1073/pnas.1615269114
http://paperpile.com/b/uFH05H/UATo
http://paperpile.com/b/uFH05H/UATo
http://paperpile.com/b/uFH05H/UATo
http://paperpile.com/b/uFH05H/UATo
http://paperpile.com/b/uFH05H/UATo
http://paperpile.com/b/uFH05H/UATo
http://dx.doi.org/10.1002/ana.21454
http://paperpile.com/b/uFH05H/gbN2
http://paperpile.com/b/uFH05H/gbN2
http://paperpile.com/b/uFH05H/gbN2
http://paperpile.com/b/uFH05H/gbN2
http://paperpile.com/b/uFH05H/gbN2
http://paperpile.com/b/uFH05H/gbN2
http://paperpile.com/b/uFH05H/gbN2
http://dx.doi.org/10.3389/fninf.2013.00014
http://paperpile.com/b/uFH05H/B5nq
http://paperpile.com/b/uFH05H/B5nq
http://paperpile.com/b/uFH05H/B5nq
http://paperpile.com/b/uFH05H/B5nq
http://paperpile.com/b/uFH05H/B5nq
http://paperpile.com/b/uFH05H/B5nq
http://dx.doi.org/10.7554/eLife.49547
http://paperpile.com/b/uFH05H/JiSD
http://paperpile.com/b/uFH05H/JiSD
http://paperpile.com/b/uFH05H/JiSD
http://paperpile.com/b/uFH05H/JiSD
http://paperpile.com/b/uFH05H/JiSD
http://paperpile.com/b/uFH05H/JiSD
http://paperpile.com/b/uFH05H/JiSD
http://dx.doi.org/10.1177/1088868317720362
http://paperpile.com/b/uFH05H/VgU1
http://paperpile.com/b/uFH05H/VgU1
http://paperpile.com/b/uFH05H/VgU1
http://paperpile.com/b/uFH05H/VgU1
http://paperpile.com/b/uFH05H/VgU1
http://paperpile.com/b/uFH05H/VgU1
http://dx.doi.org/10.1146/annurev-psych-122414-033417
http://paperpile.com/b/uFH05H/asmW
http://paperpile.com/b/uFH05H/asmW
http://paperpile.com/b/uFH05H/asmW
http://paperpile.com/b/uFH05H/asmW
http://paperpile.com/b/uFH05H/asmW
http://paperpile.com/b/uFH05H/asmW
http://www.nature.com/doifinder/10.1038/nrn1919

